
A Fast Culling Algorithm for 2D and 2.5D Side-scrolling Games

Frederico Mameri Rômulo Nascimento

Federal University of Uberlândia, Dept. of Computer Science, Brazil

Abstract

This paper describes a fast culling technique for 2D
and 2.5D side-scrolling games, as well as for other
kinds of games that share the same visual approach. In
such a technique, objects can be sorted by their X
coordinates and culled out based on the position of the
camera.

This paper presents the algorithms and data
structures needed to implement the method here
described. Some problems that might occur and their
solutions are also presented. Finally, we will discuss
how the same technique can be used to speed up
collision detection.

Keywords: 2D games, 2.5D games, viewing frustum
culling, motion parallax

Authors’ contact:
{fred,romulo}@comp.ufu.br

1. Introduction

In the past decade, 2D side-scrolling games have been
massively phased out in favor of 3D games. However,
this situation has started to change with the advent of
game industry for handheld systems (such as cell
phones and Pocket PC’s), the revival of portable game
consoles (carried out by the Nintendo DS) and the rise
in the interest in the so-called retro games.

 Portable devices, such as cell phones and the
Nintendo DS, also feature a number of 2D and 2.5D
games in its library. Surprisingly, some of the recent,
3D-optimized powerful consoles, e.g., Playstation 2,
also do.

 Finally, 2D games use much simpler algorithms
and data structures than 3D games, and are usually the
starting point for someone who is beginning to learn
game programming. Teaching (and learning) culling
techniques in a 2D world is also much simpler than in a
3D one.

 For all these reasons, a fast culling technique for
2D and 2.5D games is necessary, despite the world’s
tendency to overlook these types of games.

 For additional information on culling techniques
applied to games, [Eberly 2000; Schröcker 2001;
Zerbst and Duvel] can be consulted.

1.1 Overview

Section 2 will present the general algorithm and its
data structures. Section 3 will discuss some of its most
important features, as well as problems and their
possible solutions. Then Section 4 will show how
performance can be improved for certain kinds of
games and Section 5 introduces some extensions to the
basic algorithm. As a final point, we draw conclusions
and present ongoing and further work.

2. The algorithm

In every two-dimensional side-scroller there is a list of
objects in the game (visible or not). These objects are
all drawn on the same layer. That way, the set S of the
objects in the game is an equivalence class over their Z
coordinates.

2.1 The list of objects in the game

The technique proposed here consists of placing
objects on a list, sorted by the X coordinate of their
center point (Xcenter). This point is defined for an object
as the arithmetic mean of its Xmin and Xmax, where Xmin
and Xmax are the X coordinates of the most leftward
and the most rightward points of the object,
respectively.

Such a list should be doubly linked, and each node
should contain information such as the Xmin and Xmax
points and additional relevant information, as well as
pointers to the previous and next nodes.

 The list with all the objects that can be drawn
(visible or not) is called the Objects list (henceforth
called the ω list). Such a data structure also features
two special pointers, α and β: the former points to the
first object that is actually being shown on the screen
and the latter points to the last object on the screen.
This is the central idea of this paper and will be
developed during it.

2.2 General workings

Let CamXmin and CamXmax be the farthest visible
column of pixels to the left and to the right of the
screen, respectively. Now suppose the camera has been
offset by ∆x pixels along the X axis. In that case, both
CamXmin and CamXmax will be increased by ∆x.

 If the width of the visible part of the object farthest
to the left of the screen (pointed by α) is less than or
equal to ∆x pixels, than that object will not be drawn

anymore (it is now out of sight). Under that
circumstance, α must point to another object to
maintain its property.

 The algorithm consists of a pair of searches: one is
stopped when the first object to be drawn is found and
α is updated, the other stops when the first object not to
be drawn is found and β is updated. The algorithm
determines if the currently visible objects are still
going to be visible in spite of the camera displacement.

 First, it searches for the first object that is going to
be visible, and assigns it to α. Such a search starts in
the currently first visible object, checking to see if it is
still going to be visible. This process only works for
strictly positive values of ∆x.

 Then, it checks for visible objects, i.e., it stops
when it finds the first element not to be drawn. It then
assigns its previous element to β, who now points to
the last element on the offset screen.

 When it comes to negative displacements, the first
search starts on β and moves backwards. Likewise, the
second search stops when it finds the first object not to
be shown, and α is set accordingly. This second search
is, of course, also done backwards.

 The complete version of the Cull algorithm that
deals with both positive and negative displacements
can easily be constructed from the previous two
algorithms by adding a initial condition that checks if
∆x is positive or not.

3. Most important features

Some properties arise from the design of this
algorithm. These properties will be briefly discussed in
this section.

3.1 Iterative culling

Unlike traditional culling algorithms, that work on a
given scene configuration, the algorithm presented here
works by finding the difference from a previously
culled scene.

 The benefits of this kind of approach are only felt if
the camera displacement was not too large. On a worst-
case scenario (one in which the camera was displaced
by a large value), this approach would perform as
badly as any other would.

3.2 Main character

The main character of the game should not be in the ω
list, for it is never going to be culled out. In fact, in
most games (or game levels), it is the displacement of
the main character that triggers a displacement in the
camera.

3.3 Multiplayer split-screen games

It is not rare to see video games that feature a mode in
which the screen is divided and each player has his/her
own viewport, yet they all share the same scenario.
Implementing such a feature can be easily achieved by
keeping separate α and β pointers, as well as individual
CamXmin and CamXmax variables for each player and by
running the Cull algorithm for each one of them.

3.4 Make-wide objects

Suppose a very large object L (partially on the screen),
a smaller object S (totally out of the screen), whose
Xmin and Xcenter are located between L’s Xmin and Xcenter
points, and a positive displacement of the camera.

As looking for the first object not to be drawn, the
Cull algorithm will detect that S is entirely out of
screen, and so it will stop, making β point to the object
immediately before it. L will not be drawn at all (even
though it should partially be). In order to address this
problem, consider the following definition.

Definition 1: An object w is wide if there is some
object m so that both Xmin and Xcenter of m lie between
Xmin and Xcenter of w or both Xcenter and Xmax of m lie
between Xcenter and Xmax of w. In that case, m is a make-
wide object.

 Now that the notion of a make-wide object was
presented, we will introduce four alternatives to solve
the problem, and discuss the advantages and
disadvantages of each one.

Multiple layers

The ω list could be split up into n smaller lists δk (1 ≤ k

≤ n), so that δ1 ∪ δ2 ∪ …∪ δn = ω and no wide objects

exist within any list. In this case, each list δk would
have its own α and β pointers.

 An advantage of such a method is that each layer
may individually give its own weight to the camera
displacement (i.e., each layer may multiply ∆x by a
scale factor). That is exceptionally useful for the
implementation of motion parallaxing, which gives
some layers the appearance of being farther away than
others (because they move slower) and is useful for
creating an illusion of depth [Hii 1997].

 A disadvantage of this method is that the algorithm
Cull has to be run for each layer, meaning that the
overall performance will decrease.

Make-wide bit

 An alternative to using multiple layers is adding a
flag bit to each node in the ω list, indicating whether
that object is make-wide or not.

 This way, the Cull algorithm can be modified as
follows: if during the search a make-wide object is
found, the search continues even if it should stop. That
way, wide objects that should have been detected but
were not by the original algorithm will now eventually
be.

 The problem with this approach is that objects that
are not on the screen (make-wide objects) will be
located between the α and β pointers, i.e., it will be
considered for being drawn onto the screen.

Mixed approach

The two approaches mentioned above can be
combined, so that neither the number of layers nor the
number of make-wide objects is too high (meaning that
neither the Cull algorithm will have to be run too many
times nor the while loop will run for too long).

Delegate objects

A fast solution to this problem can be achieved by
placing only the wide object in the ω list, and then
have this object point to all its make-wide objects. That
way, if the algorithm decides that the wide object is to
be drawn, then all the make-wide objects will also be.
In this technique, we called the wide object a delegate
object.

4. Performance improvement

In strictly 2D games based on tile sets, it is possible to
further improve the algorithm’s performance by
dealing with indices instead of pointers. This is
possible because many games in this category split
objects up into tiles instead of considering them single
large objects.

 The usage of tiles is memory saving. The same tile
may appear many times to form a single object.
Without using tiles, this information would be stored
and processed repeated times. Moreover, the same tile
may be simply flipped, either horizontally or vertically,
to form objects (this is especially used on edges).

 Another advantage of tile-based games is that it is
easy to use a map editor to create levels for them.

 This technique is usually implemented by
considering the game level a matrix of numbers, where
each number represents a tile univocally.

 In order to use the algorithm, the values of CamXmin
and CamXmax are converted into α' and β', which
represent the indices of the first and the last columns to
be drawn on the screen.

Notice that calculating α' and β' is much faster than
running the original Cull algorithm. Once α' and β' are
calculated, it is enough to draw every column c (α' ≤ c

≤ β') subtracted by d, where d is the number of pixels
in the first column that should not be drawn.

Tile-based games can also be used in kinds of

games other than side-scrollers. This technique, known
as isometric projection, has been extensively used to
simulate 3D games [Van Looy 2003]. That is the case
of many famous commercial turn-based strategy games
and ecosystem simulators.

5. Some extensions to the algorithm

In this section, we are going to discuss how the same
algorithm can be used in different ways, and the
necessary modifications, if needed.

5.1 Support for moving objects

So far the algorithm has only dealt with static objects,
such as trees and walls. Nonetheless, computer games
usually present moving objects, such as platforms and
enemies that patrol a given area.

 These objects are constantly moving, and so are
their Xmin, Xcenter and Xmax points. If the moving objects
were simply to be placed in the ω list, then it would
have to be constantly re-sorted and the Cull algorithm,
run each time that happened. Clearly, this solution is
not desirable.

 We propose two solutions for this problem,
presented next.

Roomy objects

 If the object moves in a predictable, fixed way
(such as platforms, or enemies that patrol a given area),
that object could be considered a roomy object.

Roomy objects have their Xmin set as the X
coordinate of the most leftward point they can ever
have during their path. Likewise, their Xmax is the X
coordinate of the most rightward point they can ever
have during their path. The algorithm Cull is not
modified.

 By making an object a roomy one, it is easy to end
up with a wide object. If that is the case, it must be
treated as so (the techniques discussed earlier apply).

Special objects

 If the moving object does so in an unpredictable
way, or if its path is so big that making it a roomy
object would wreck havoc the algorithm, then the
object should be treated as a special object, which are
always considered for drawing, regardless of their
position along the X axis.

 The disadvantage of this method is that if there are
too many of these special objects, the result could be
that the algorithm would be rendered useless.

5.2 Support for collidable objects

As the player’s character will always be entirely on
screen, it can only collide against objects located
between the α and β pointers. That way, collision
detection can be done quite fast: to check for collision
detection, it is enough to check the collidable objects
located between the α and β pointers.

 Furthermore, has the list been divided into layers,
the search for collision is restricted to some layers, e.g.,
the background layers will never collide against the
main character.

5.3 Support for invisible objects

Invisible objects are often used in order to trigger
events in the game. This will happen whenever the
main character will collide against the invisible object.
The Cull algorithm is capable of handling these
invisible objects without further modifications.

 The same class of invisible objects that can be used
to trigger actions in the game itself can also be used to
spark actions in the game engine.

 We are going to use invisible objects to improve
the performance of the algorithm, by culling objects for
a range greater than CamXmax – CamXmin.

That way, the Cull algorithm will need not be run
every time there is a displacement in the camera, but
rather, only when the main character will collide
against these invisible objects.

 The greater the size of the culling region, the less
the Cull algorithm will be run and the more the number
of objects that will be considered for drawing.
Therefore, should this approach be used, one should
bear in mind this tradeoff.

5.4 Adapting the algorithm for 2.5D Games

A 2.5D side-scrolling game (or 2.5D side-scroller) is a
game that uses 3D polygonal meshes to render the
scene, including characters, but the gameplay is like
that of strictly 2D games.

 3D objects will have their Xmin and Xmax fields set as
the X coordinates of the projection on the screen plane
of their points most to the left and most to the right.
Likewise, CamXmin and CamXmax refer to values on the
screen plane. We called this process normalizing
objects to 2D.

 Once all the objects are normalized, all the
techniques previously mentioned apply, except for the
tiles matrix.

6. Conclusion

We have presented a fast culling technique for 2D and
2D-like 3D games that also speeds up collision
detection. Algorithms and data structures have been
presented and problems and solutions have been
discussed.

 A disadvantage of this method is that it is used
primarily by side-scrolling games (although some other
kinds of games may find use in it, such as RPG’s or
ecosystems simulators). Other kinds of games with a
different visual approach may find little or no use in
the technique here proposed.

Ongoing and further work

This is not a finished work. We are currently
researching the optimal parameters for each of the
tradeoffs presented along this paper.

 Next, we plan on working on a modified version of
the Cull algorithm that takes into account
multidimensional displacements (i.e., changes in ∆y
and ∆z are also taken into account by the algorithm),
allowing a greater range of game types to benefit from
it.

Acknowledgements

Professor Sandra de Amo for reviewing this paper.
Anonymous reviewers for their invaluable comments.

References

EBERLY, D. H., 2000. 3D Game Engine Design : A Practical

Approach to Real-Time Computer Graphics. Morgan
Kaufmann.

HII, D., 1997. zLayer: simulating depth with extended

parallax scrolling. In: Proceedings of the ACM
symposium on Virtual reality software and technology,
15-17 September 1997 Lausanne, Switzerland. New
York: ACM Press, 65-69.

SCHRÖCKER, G., 2001. Visibility Culling for Game

Applications [online] Graz University of Technology.
Available from: www.schroecker.info/download/pvs.pdf
[Acessed August 18 2006].

VAN LOOY, J., 2003. Interactivity and signification in Head

Over Heels [online] The International Journal of
Computer Game Research, December 2003. Available
from http://gamestudies.org/0302/vanlooy/ [Accessed
August 24 2006].

ZERBST, S. AND DUVEL, O., 2004. 3D Game Engine

Programming. Course Technology PTR, 1st edition.

